Oxygen attenuates atelectasis-induced injury in the in vivo rat lung.

نویسندگان

  • Michelle Duggan
  • Patrick J McNamara
  • Doreen Engelberts
  • Cecil Pace-Asciak
  • Paul Babyn
  • Martin Post
  • Brian P Kavanagh
چکیده

BACKGROUND Atelectasis results in impaired compliance and gas exchange and, in extreme cases, increased microvascular permeability, pulmonary hypertension, and right ventricular dysfunction. It is not known whether such atelectasis-induced lung injury is due to the direct mechanical effects of lung volume reduction and alveolar collapse or due to the associated regional lung hypoxia. The authors hypothesized that addition of supplemental oxygen to an atelectasis-prone ventilation strategy would attenuate the pulmonary vascular effects and reduce the local levels of vasoconstrictor eicosanoids. METHODS In series 1, anesthetized, atelectasis-prone mechanically ventilated rats were randomly assigned to one of six groups based on the inspired oxygen concentration and ventilated without recruitment. Series 2 was performed to determine the cardiac and pulmonary vascular effects of 21% versus 100% inspired oxygen. In series 3, computed tomography scans were performed after ventilation with a recruitment strategy (21% O2) or no recruitment strategy (21% O2 or 100% O2). In series 4, functional residual capacity was measured in animals where the gas was 21% or 100% O2. RESULTS The partial pressure of arterial oxygen increased with increasing inspired oxygen, but the alveolar-arterial oxygenation gradient was also greater with higher inspired oxygen. Ventilation with 21% O2 (but not with 100% O2) was associated with progressive pulmonary vascular impedance and increased pulmonary vascular permeability. Prostaglandin F2alpha was increased by mechanical ventilation, especially without supplemental oxygen. Computed tomography scans demonstrated no atelectasis in recruited lungs, and atelectasis in nonrecruited lungs that was greater with supplemental oxygen. Increased atelectasis with 100% O2 (vs. 21% O2) was demonstrated by measurement of functional residual capacity. CONCLUSIONS Although supplemental oxygen worsened atelectasis in this model, it prevented the pathologic effects of atelectasis, including microvascular leak and pulmonary hypertension. Atelectasis-induced lung injury seems to be mediated by hypoxia rather than by the direct mechanical effects of atelectasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asiaticoside attenuates hyperoxia-induced lung injury in vitro andin vivo

Objective(s): Asiaticoside (AS) displays anti-inflammation, and anti-apoptosis effect, but the role of AS in hyperoxia-induced lung injury (HILI) treatment is undefined. Therefore, the aim of this study was to investigate the effects of AS on HILI on premature rats and alveolar type II (AEC II) cells.Materials and Methods: Sprague-Dawley...

متن کامل

Establishment of a rat model of radiation-induced lung injury

Background: Radiation-induced lung injury is a refractory side effect in lung cancer radiotherapy, the mechanism still remains unclear, hence an appropriate animal mode may become useful to investigate it. Materials and Methods: 50 female Wistar rats were randomly divided into 5 groups, average 10 rats/cage: A. control group B. 3Gy×10f C. 6Gy×5f D. 12.5Gy×1f E.15.3Gy×1f....

متن کامل

Independent ventilation of the graft and native lungs in vivo after rat lung transplantation.

Rat lung transplantation is a proven experimental technique for the study of lung injury following lung transplantation. We have modified the surgical and ventilatory techniques to allow for independent ventilation in vivo of the transplanted graft and native lungs. This will provide additional data on the physiology and function of the transplanted graft and ameliorate the problem of progressi...

متن کامل

Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats

Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI).   Materials ...

متن کامل

Time-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury

Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time point...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesiology

دوره 103 3  شماره 

صفحات  -

تاریخ انتشار 2005